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A singular integral operator arising from 1/N expansions: 
analytical and numerical results 
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Istituto di Fisica dell’Universit8, 43 100 Parma, Italy 
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Abstract. The spectrum of the singular integral operator 

1 ‘  
(K.d)(x) = - f ( x  - y)-’($b) - $ ( y ) ) a ( A ,  y )  dy 

rr - 1  

with v(A, x ) =  (1 - -~* )~ / ’ (1  +A2x2)1/2 is studied both analytically and numerically. It is 
shown that K, has a simple discrete spectrum 0 =Eo(A)<E1(A) 
< & ( A )  < . . . < ,??,(A) < . . . with asymptotic behaviour 

E,-i(A) - nw(A 1 + q(A 1 
where w ( A )  is interpreted as the frequency of the periodic orbits for a corresponding 
Hamiltonian dynamical system, and q ( A )  is an ‘average potential’ defined in terms of 
a(A, x ) .  Singular integral operators of this kind arise in the analysis of SU(N)-symmetric 
quantum dynamical systems and in two-dimensional SU(N) gauge theories in the limit 
N + w .  

1. Introduction 

The object of this paper is to study the spectrum of the following singular integral 
operator 

defined in a suitable domain in the real Hilbert space L2((-l, 1), U dx), where 

O G A < 1  (2) a ( A , x ) = ( l - ~ ~ ) ” ~ ( l + A  2 x 2 ) 1/2  

andfdenotes the Cauchy principal value. +(x) will be assumed to be differentiable with 
$ ‘ ( x )  satisfying a Holder condition in order that the Cauchy principal value in the 
definition (1) makes sense. In particular $(x) must be bounded. Let Do(K,) denote 
such a domain in L2.  

The operator K, is met in the study of the planar ( N  -, CO) limit of SU(N)-symmetric 
quantum dynamical systems (Marchesini and Onofri 1979). In particular the positive 
eigenvalues of (1 -A2)--1’2K, represent the N - ,  CO limit of the energy levels of the 

f Unitti Risonanze Magnetiche del GNSM-CNR, Parma, Italy. 
$ INFN, Sezione di Milano, Milano, Italy. 

0305-4470/80/041217 + 09$01 S O  @ 1980 The Institute of Physics 1217 



1218 M Casartelli, G Marchesini and E Onofri 

SU(N)-symmetric Hamiltonian 

(4) 
belonging to the adjoint representation of SU(N) (after shifting to zero the value of the 
ground state). The coupling constant g E (0, +CO) is a function of the parameter A in 
equation (2) with g(0) = 0 and limA+l g(A) = -+-Co. 

A similar eigenvalue problem arises also in two-dimensional SU(N) gauge theory in 
the planar limit ('t Hooft 1974). 

The results we present here are the following. 
(i) K, is essentially self-adjoint; its unique self-adjoint extension has a purely 

discrete non-degenerate spectrum 0 = Eo(A) < El(A)  < , . , < En(A) < , . . with E,(A) + 
+CO when n +CO,  and the corresponding eigenfunctions are of class C". 

(ii) & ( A )  grows asymptotically as E,-l(A) = nw(A)+q(A)+O(l /n) ,  where w ( A )  
and q ( A )  are defined in terms of a(A, x);  w ( A )  may be interpreted as the frequency of a 
related classical Hamiltonian system, while q ( A  ) corresponds to the average potential. 

(iii) The asymptotic value is actually reached very rapidly: the O ( l / n )  correction in 
the eigenvalue formula is of relative order lop6 for n as low as n = 5. 

The result (i) is proved in § 2 by showing that (K, + c)-' is compact; point (ii) is also 
proved in § 2 where we show that the eigenvalue equation for K, can be reduced to the 
standard form of a singular integro-differential equation (Muskhelishvili 1953). Hence 
it can also be reduced to a regular Fredholm equation from which the asymptotic 
behaviour of eigenvalues and eigenfunctions can be easily obtained. 

In 8 3 we study K, from a numerical point of view to explore the low part of the 
spectrum which is not a priori covered by the asymptotic estimate. Several lines of 
attack are at our disposal. Surprisingly enough, the most simple one gives the best 
results. We apply a Gaussian quadrature formula to reduce K, to a finite M x M 
symmetric matrix K'M' with M = 50,60,70,80,90.  The eigenvalues ELM)(A) are then 
extrapolated in the variable 1/M to the formal value 1 / M = 0 .  The asymptotic 
behaviour which is known analytically is reproduced to a very high accuracy, while it is 
completely masked in the finite approximations ELM'. 

2. The spectrum of K, and its asymptotic behaviour 

The first property of K, to be proved is the following. 

Theorem 1. K, is symmetric and positive semi-definite. 

Proof. For any (I, and q5 belonging to Do(&) it holds that 

/ d A ,  x)q5(x) f (x -y)-*(+(x)-+(y))~+(A, y )  dx dy 

which is symmetric under interchange of (I, and q5. 
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We also have 

with ($, K,$) = 0 implying $(x) = constant, which is the first (trivial) eigenfunction. 
The next property we want to prove is the following. 

Theorem 2. K, has a unique self-adjoint extension with a purely discrete non- 
degenerate spectrum extending to +@. 

To prove theorem 2 we need some lemmas. 

Lemma 1. K, is equivalent under a similarity transformation to the operator H, given 
by 

where 4 E L2((-1, l ) ,  U-' dx) is of the form q5 = v(A, x)$(x), $ E Do(K,). The 'poten- 
tial' q ( A ,  x)  is defined by 

Proof. Starting from the definition (l), we add and subtract the quantity 
v(A, x)$(x)(x - 

(K,$)(x) = $ ( X I  f (x - Y ) - 2 ( d A ,  y )  - d A ,  x)) d y l r  

under the integral sign to obtain 
1 

-1 

1 -I-, ( x  -y)-*(dA, y)$(y)-dA, x)$(x)) dy/.rr. 

We now apply the following identity, which can easily be established through an 
integration by parts: 

The result then follows, by defining 4 (x )  = a(A, x)$(x). 

Lemma 2. q ( A ,  x)  is bounded in 1x1 S 1. 

Proof. The Taylor series of (1 +A2y2)"2 is uniformly convergent in I y I S  1;  we then 
integrate term by term by applying the well known result 

The power series that we obtain is convergent for Ix I < A -' and it can be resummed to 
vield 

~ ( A , X ) = - ~ F ~ ( - ~ , - ; ;  1;-A ) - - -  x3dA,  Y )  
2 2 2 d Y  

T dx - 1 1 + A  x y 

and the result follows (notice that even the limit A + 1 gives a bounded potential). 
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Lemma 3. In the special case A = 0, Piuco) has the spectral decomposition 

where V,(x) are the Chebyshev polynomials of the second kind (suitably normalised). 

Proof. This is a simple consequence of the well known properties of Chebyshev 
polynomials (Abramowitz and Stegun 1965) together with q(0 ,  x)  = -1 (from lemma 
2). This fact was independently proved by Calogero and Perelomov (1978). 

Now let us proceed to the proof of theorem 2. Let us decompose H, into the sum 
q ( A ,  x )  +Hc’ where 

1 

(H:’~)(X) = - a ( A ,  X )  (y  - X ) - . ’ ~ ’ ( Y )  dy / r .  f-’ 
Let us introduce a orthonormal basis in L2((-l, l), a-’ dx) given by 

4?? (x) = p 2 ( X  )( 1 - x 2 P 2  U, (x) (9) 
2 2 1/2  where x(x) = (1 + A  x ) 

value equation 
. According to lemma 3, the functions 4,, satisfy the eigen- 

(bn)(x) = ( n  + 1)4n(X)* ( X - 1 / 2 H ~ ) x - 1 / 2  

It follows that 

H?’ then admits a unique self-adjoint extension, with domain D prescribed by the 
spectral decomposition (1 O)?. Moreover Pi?’ has a compact inverse 

(recall that both x(x)  and x(x)-’ are bounded). It follows that H? has a purely discrete 
spectrum extending to fa. This same property holds for H, = HbO’ + q ( A ,  x)  since 
q ( A ,  x) is bounded. In fact we have for any c > 0 

(H?’ t q + c y  = (1 +Pi?’ -I(q + c))-’Hf’-’ 

which shows that H f ’  +q  has a compact resolvent. That the spectrum is non- 
degenerate is quite obvious for sufficiently small A, but this property will be proved in 
general after theorem 3. 

It should be noticed that the domain of self-adjointness of Pi ,  is given by 
00 m 

D(H,) = { t ~ ( x )  = c anun(x) ( l  - x 2 ) 1 / 2 ,  1 ( n  + 1)2ai <cc 
n =O n = O  

and correspondingly 

t In other words, the closure: fib“’ is self-adjoint in D and aDo(K,) is a core for fiz’ 
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which are proper extensions of the original domains we started with. Nevertheless the 
eigenfunctions of K, can be easily shown to be C" in (-1, 1) and the action of K, on its 
eigenfunctions is correctly represented by the singular integral operator (1). (Hint: the 
components a, of the eigenfunctions decrease faster than any power n - k  for y1 -j CO.) 

Let E,(A) be the nth eigenvalue of K, (and of H,). We know from theorem 2 that 
E,(~)-+co as n +CO.  We can now characterise the asymptotic behaviour of E,@). 

Theorem 3. The asymptotic expansion of E,(A) is given by 

E,(A)=(n + l ) w ( A ) + q ( h ) + O ( l / n )  
where 

( K (  . )  being the complete elliptic integral of the first kind) and 
1 

(13) 
1 

q ( h )  =--w(h) a(A, x)-'q(A, x)  dx. 
7r 

Proof. The eigenvalue equation for E, can be cast into the form 

where B(x)  = a ( h ,  x)/(q(A, x )  -E,). Equation (14) is studied in detail in Muskhelish- 
vili's book (1953) to which we refer for details. Since B ( x )  is even in x, the eigen- 
functions can always be chosen of definite parity. Let us first consider the case 
&(-x) = &(x).  Equation (14) is then equivalent to the regular Fredholm equation 

1 

4n(x)+[ H(x ,  y ) 4 n ( y )  dy =4n(O)cos ~ ( x )  (15) 
-1 

where 

(16) 

H(x ,  y ) =  (1 - z*) -"~R(z ,  y )  COS('r(X)-T(Z)) dz I,' 
We know from theorem 2 that equation (15) has a solution when E, belongs to the 
spectrum; from the theory of Fredholm equations this solution is unique and the 
spectrum is non-degenerate. Since q(h ,  x)  is bounded, q(h,  x )  -E, does not vanish in 
[-1, 11 for sufficiently large n ; this fact allows us to integrate by parts in equation (17) to 
obtain 

The leading term of H(x ,  y )  as n + CO is factorised and odd in y so that we obtain the 
explicit asymptotic behaviour of the eigenfunctions 

4 n ( X ) - 4 n ! O ) C O S  d x ) .  (20) 
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The boundary condition 4,,(l) = 0 gives then equation (11) with odd n. A similar 
argument holds for even n. 

The asymptotic estimate of theorem 3 turns out to be very accurate relative 
error) for n 3 5 ,  but it gives a good approximate value for E,(A) also for n as low as 
n = 2 (see table 1 for a comparison with the numerical results of Q 3)+. 

It is obvious that the case A = 0 is rather exceptional, since q(0 ,  x)= -1 and 
H(x, y) = 0. It follows that equation (20) gives the exact solution in terms of Chebyshev 
polynomials of the second kind with E,(O) = n, as anticipated in lemma 3. 

Table 1. A: (1 -hZ)-1’2E,(A), numerical value (0  3). B: (1 -h2)-1’2E,(h) ,  from asymp- 
totic estimate (11). C: (E,,, - E , , ) ~ ( A ) - ’ .  

n A  B C 

A2=0.1  1 
2 
3 
4 
5 

A2=0.2  1 
2 
3 
4 
5 

A2=0.4 1 
2 
3 
4 
5 

h 2 = 0 . 8  1 
2 
3 
4 
5 

1.05424757 
2,13437110 
3.2 140295 1 
4.29369340 
5.37335724 

1.1 1865524 
2.29126038 
3,46200102 
4.63278317 
5.80356462 

1.29357774 
2.70780820 
4.11427816 
5.52106066 
6.92783352 

2.25098376 
4.89702771 
7.49813389 

10,10229667 
12,70629728 

1,05470189 
2.1 3436573 
3,21402957 
4.29369341 
5.37335725 

1.12043877 
2,29122024 
3,46200171 
4.63278318 
5.80356465 

1,30074098 
2,70751414 
4.11428729 
5.52 106044 
6.92783359 

2.290387 
4.894395 
7.498404 

LO. 102412 
12,706420 

0.97646 
1.00043 
0.99999 
1 + 5 ~ 1 0 - ’  
1 + 
0,95548 
1,00156 
0.99997 
1 + 6  x lo-’ 
1-2x10-’ 

0.91954 
1,00530 
0,99978 
1~00001 
1 - 2 x io-’ 

0.86443 
1,01614 
0.99889 
1.00006 
1-3  x 

w ( A )  = 1.02425905 
q ( h )  = -1,04794004 

w ( A )  = 1,04717878 
q ( A ) =  -1.09220666 

w ( h ) =  1,08968180 
q ( A )  = -1.17181395 

w ( h )  = 1.16454786 
q ( A )  = -1.30480341 

3. Numerical calculation of the eigenvalues 

We shall now apply a discrete approximation to the eigenvalue equation for K,. Since 
a ( A , x )  is singular at the endpoints, a discrete approximation is best performed by 
introducing the variable 6 = c0s-l x. The Riemann sum in 0 is equivalent to a Gauss 
quadrature formula in terms of Chebyshev polynomials of the second kind. We find 
that K,, is approximated by the M x M real symmetric matrix K‘M’ with entries 

where xi =cos [k.rr/(M+ l)] are the zeros of U M ( x )  and ~ ( x )  is the same as in Q 2. 
f It turns out that E l ( h )  is closely approximated by the variational bound El G (#, K&)/(#,  $1 with $(x) = x. 
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The eigenvalues Elf"' of K C m )  have been calculated for M = 50, 60,70, 80, 90 and 
for several values of A E [0, 1). Truncation errors become severe for n a&, culminat- 
ing in complex eigenvalues (this is quite a general phenomenon, see Ralston (1965)). 

Let us recall that the eigenvalues of K, for A = O  are simply given by En(0)= 
n ( n  = 0 ,  1, 2,  . . .). A remarkable feature of the numerical analysis at A = 0 is that all 
the eigenvalues Elf"' (0) are interpolated by the simple formula? 

M n  - i n 2  
M+1 

EkM'(0) = ( n  = 0 , 1 , .  . . ,M-.1) 

which gives in fact the exact solution in the limit M + CO. This fact suggests that we look 
for an interpolation formula also for A > 0. A Langrangian interpolation formula in the 
variable 1/M (at fixed n )  gives the results reported in table 1, where the differences 
En+l(A)-En(A) are seen to approach very quickly the asymptotic value w ( A ) .  This 
property is, however, completely masked at every finite approximation, where the 
second differences E,,, - 2En +E,-1 are approximately constant and different from 
zero. We made a check of the interpolation formula by calculating EL9'' ( A )  starting 
from previous values from M = 50 to M = 80. The agreement is very good for n < 10 
(see table 2). All this evidence supports the belief that our approximation scheme gives 
the correct values of the first ten eigenvalues. For n b 5 the asymptotic estimate of 
theorem 3 can be safely applied with 5-8 figure accuracy (depending on A ) .  

Table 2. Sample results on the accuracy of Lagrange interpolation. A: (EL9:! -E',Y"')(l- 
A2)-1'2. B: the same quantity obtained by Lagrange interpolation from the values at 
M = 50 through 80. C: relative error of B with respect to A. 

n 

A2=0.2  1 
5 

10 
15 
20 

A2=0.8  1 
5 

10 
15 
20 

A 

1.10030572 
1,099 19804 
1.03407320 
0,96892981 
0.91679703 

._ 

2.21 555 160 
2.44402962 
2.29747397 
2.15047209 
2.03243814 

B 

1 ,1003 05 7 0 
1.09919804 
1,03407322 
0,96893002 
0,91679808 

2,21555 162 
2.44402964 
2.29747438 
2,15047755 
2.03246788 

C 

2 x 
4 x 
2 x 

1 x 

1 x 
1 x 
4 x lo-'  
3 x 

2 x lor7 

1 x 

Of course, other numerical methods can be devised to solve the eigenvalue problem. 
For example, one can expand $(x) into Chebyshev polynomials of the second kind and 
truncate the series. One could also study the equivalent Fredholm equation (15). 't 
Hooft (1974) and Einhorn (1976) report similar calculations performed on a related 
eigenvalue problem. The method adopted here is rather fast: an overall 1 8 s  of 
computer time to calculate the first twenty eigenvalues for eight different values of A .  

t These are actually the exact eigenvalues of K'M'  (A = 0); this result is a special case of a theorem on the zeros 
of Jacobi polynomials (Ahmed et al 1979). 



1224 MCasartelli, G Marchesini and E Onofri 

4. Concluding remarks 

Let us conclude with a few remarks. 
( a )  It is clear that all qualitative results (theorems 1, 2 and 3) proven in the case 

x(x) = (1 + A  x ) (0 S A  < 1) apply also in general for any ~ ( x ) ,  provided that ~ ( x )  
and x(x)--' are smooth, bounded and such that the corresponding potential q ( x )  of 
lemma 1 be bounded. 

( b )  One can consider the case of a singular integral operator of the type of equation 
(6) with unbounded q(x). Such a problem arises in the planar limit of a two-dimensional 
Yang-Mills theory ('t Hooft 1974). Provided that q(x) is bounded from below, theorem 
2 still applies but the asymptotic behaviour of the eigenvalue has a logarithmic 
correction, E, - nw + p  In n, as can be shown by the WKB approximation ('t Hooft 
1974). 

( c )  It would be desirable to relate our results to the general theory of pseudo- 
differential operators (PDO). For instance, properties similar to those proven in 
theorems 2 and 3 are shared by a very general class of PDO acting on compact 
boundaryless manifolds (Duistermaat and Guillemin 1975). In fact the asymptotic 
spectrum of K, can be intuitively understood in terms of the WKB approximation. The 
symbol of K, as a PDO is given to leading order by K ( x ,  p )  = v(A, x)lp + q ( A ,  x). This is 
to be interpreted as a classical Hamiltonian with reflecting barriers at x = *1. The 
semiclassical estimate $ p dx = 'Ern reproduces the asymptotic result of theorem 3,  
Notice that w ( A )  is the frequency of the classical orbits and q ( A )  is just the average of the 
potential q ( A ,  x )  along any orbit. 

( d )  We recall that the spectrum of the operator (1 -AZ)-1'2Ku coincides with the 
N-.w limit of the spectrum of the anharmonic SU(N)-symmetric oscillator (4) 
restricted to the adjoint representation. From this point of view the results embodied in 
theorems 1, 2 and 3 show the consistency of the planar limit. The limit A -.0 
corresponds to the harmonic oscillator with frequency w ( 0 )  = 1, which 'explains' the 
result of lemma 3, E,(O) = n. The fact that also for A > 0 the spectrum is very nearly 
reproduced by E,-l(A) - nw(A) + q ( A )  shows that the anharmonic interaction in the 
planar limit simply amounts to a renormalisation of the frequency. 

( e )  As far as the convergence of the numerical method of § 3 is concerned, we notice 
that it has been proved that the algorithm converges to the exact solution for A = 0. It 
would be nice to have a proof of convergence also for A > O .  In a related inhomo- 
geneous problem, such a proof can be found in the literature (Kalandiya 1975). 

2 2 1 / 2  
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